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CALCULATED MODE SHAPES AND PRESSURE DISTRIBUTIONS AT

FLU_TER FOR A HIGHLY TAPERED HORIZONTAL TAIL

IN SUBSONIC FLOW

By Gerald L. Hunt and Gerald D. Walberg

SUMMARY

The mode shapes and pressure distributions of a highly tapered

horizontal-tail surface moving in its flutter mode are determined by the

subsonic kernel-function method for calculating unsteady aerodynamic

loads. The tall surface investigated was previously flutter tested at

Mach numbers from 0.75 to 1.20, and a kernel-function flutter analysis

was performed for Mach numbers from 0 to 0.98 and reported in NASA

TN D-379. The present investigation covers Mach numbers from 0.50 to

0.90 at reduced frequencies determined from the analytical flutter inves-

tigation. Those regions of the tail which absorb energy from the air-

stream at flutter are identified. The boundaries of these regions do

not change appreciably with Mach number in the range investigated; how-

ever, a decrease in the aerodynamic stiffness forces with increasing

Mach number is indicated.

INTRODUCTION

The calculation of flutter speeds and frequencies by the solution

of eigenvalue problems is a familiar procedure; however, few investi-

gators have proceeded beyond the determination of the eigenvalues to the

evaluation of the associated eigenfunctions and hence to the flutter

mode and the resulting pressure distribution at flutter. For this reason,

little detailed information is available concerning the unsteady pressure

distributions and mode shapes existing on lifting surfaces of finite span

at flutter. A knowledge of these pressure distributions and mode shapes

should facilitate a better understanding of the nature of flutter.

Accordingly, flutter mode shapes and pressure distributions calculated

for Mach numbers up to 0.90 are presented herein for a horizontal-tail

configuration obtained by joining the exposed semispans of the experi-

mental model of reference 1. The configuration investigated thus has a

panel (semispan) aspect ratio of 1.66, taper ratio of 0.176, and leading-

edge sweep angle of 30 ° .
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Subsonic flutter boundaries for this horizontal-tail surface have
been calculated in reference 1 by the kernel-function method of refer-

ences 2 and 3 and are in good agreement with experiment at Mach numbers

below 0.90. This agreement suggests that, for this configuration,

theoretical pressure distributions calculated by the method of refer-

ences 2 and 3 should be similar to the actual pressure distributions

existing on the surface at flutter. Therefore, the kernel-function

method is also employed in the present analysis. The kernel-function

method for calculating unsteady aerodynamic loads is a lifting-surface

theory involving direct consideration of the integral equation relating

the lift and downwash distributions of oscillating finite wings. Details

of this procedure are presented in reference 2.

Since reference 1 is a stability analysis, points of neutral sta-

bility (flutter points) were determined, but no explicit presentation

of mode shapes or pressure distributions at flutter was made. Flutter

pressure distributions and mode shapes are, of course, implicit in the

elements of the flutter determinant. The present investigation is thus

an extension of reference i.

In the calculation of the flutter mode shapes, the generalized

coordinate ratios at flutter are obtained from simultaneous solution of

the equations of motion. The natural vibration modes of the model are

combined according to the generalized coordinate ratios to obtain the

flutter mode shapes. Modal pressure distributions are similarly combined

to yield pressure distributions at flutter. Those regions of the tail

which absorb energy from the airstream at flutter are identified.

SYMBOLS

Aij

b

b o

bt

ClJ

Cp(x,y,t)

generalized aerodynamic force

panel aspect ratio

streamwise semichord, ft

streamwise semichord at center line, ft

streamwise semichord at tip, ft

complex constants

coefficient of lifting pressure with phase angle measured

from flutter-mode displacement
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Cp (x,y,t)

Cp,o(x,Y)

f

fi

g

h(x,y,t)

hi(x,Y)

hj(x,y)

ho(x,y)

coefficient of lifting pressure with phase angle measured

from first natural-mode component of flutter motion,

 p/q

amplitude of coefficient of lifting pressure

frequency, cps

frequency of ith natural vibration mode, cps

structural damping coefficient

instantaneous deflection of point on tail surface in its

flutter mode, positive downward, ft

normalized, natural mode shape of ith natural vibration

mode

normalized, natural mode shape of Jth natural vibration
mode

amplitude of surface deflection at flutter, ft

_h ft/sec
= _-_,

i

Lj(x,y)

M

ml

m(x,y)

imaginary part of complex quantity

unit of imaginaries,

reduced frequency, boCU/V

dimensionless series expression for aerodynamic load

distribution due to motion in Jth natural vibration mode

exposed semispan, ft

Mach number

generalized mass associated with ith natural vibration

mode (see eq. (6b)), slugs

local mass per unit area at point x,y (see eq. (6b)),

slugs/sq ft

n number of modes
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&p(x,y,t)

 pj(x,y)

q

qi (t)

qj(t)

S

t

V

x,y,z

_(x,y)

e(x,y)

distribution of lifting pressure, positive downward,

lb/sq ft

distribution of lifting pressure associated with mode

shape hj (see eq. (2)), _2_p/Sqj, lb/sq ft/ft

dynamic pressure, lb/sq ft

generalized coordinate, _iei_t, ft

complex amplitude of generalized coordinate, ft

generalized coordinate, qje i_t, ft

real part of complex quantity

area of lifting surface panel, sq ft

time, sec

velocity of airstream, ft/sec

Cartesian coordinates (see fig. l)

phase angle between flutter mode and its first natural-

mode component (see eq. (lO)), positive when flutter

mode leads, deg

phase angle between lifting pressure and first natural-

mode component of flutter motion (see eq. (13)), positive

when pressure leads, deg

leading-edge sweep angle, deg

taper ratio, bt/b 0

panel mass ratio, ratio of exposed panel mass to mass of

truncated cone of air having lower base diameter 2bo,

upper base diameter 2bt, height _, and density p

generalized mass-density ratio for Ith natural vibration

mode (see eq. (6b))

density of airstream, slugs/cu ft

L

i

2

i

8
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Indices :

i,J

phase angle between lifting-pressure coefficient and

flutter-mode displacement (8 - _), positive when pressure

leads, deg

chordwise coordinate (see fig. 4)

angular frequency, 2_f, radians/sec

angular frequency of ith natural vibration mode

magnitude of complex quantity

particular natural vibration modes

DESCRIPTION OF CONFIGURATION

The pressure distributions and mode shapes presented herein were

calculated for the tall surface employed in the flutter investigation

of reference i. This model had a panel aspect ratio of 1.66, a taper

ratio of 0.176, and a leading-edge sweep angle of 30 °. The planform

and coordinate system used in the present investigation are presented

in figure I. Model properties are presented in table I. The first

three measured natural-vibration modes of the tail surface are presented

in reference 1 and are reproduced, for convenience, herein in figure 2.

ANALYS I S

The present investigation extends the flutter analysis of refer-

ence 1 by calculating the mode shapes and oscillatory pressure distri-

butions for the tall surface at flutter. As noted in reference 4, a

basic assumption of a Rayleigh-_itz, or modal, flutter analysis is that

the flutter mode may be represented by a superposition of either natural

or assumed modal functions in the form

n

h(x,y,t) = _. qi(t)hi(x,y)

i=l

(i)

where qi(t) = qi ei_t is the generalized coordinate of the ith chosen

mode, and h i = hi(x,y ) is the corresponding mode shape. (In the



6

present investigation, the number of modes n is 3.) Consistent with

the Rayleigh-Ritz, or modal, assumption, the pressure distribution

Ap(x,y,t) existing on the surface may be regarded as a superposition

of pressure modes

n

Ap(x,y,t) = Z qj(t)Apj(x,y)

j=l

(2)

where Apj(x,y) _ SAp denotes the distribution of lifting pressure

_qj

associated with the mode shape hj. Hence, the present analysis requires

the determination of the values of qi and Apj corresponding to the

flutter condition. The normalized, natural mode shapes h i are presented

in figure 2.

Pressure Modes

As noted in reference l, the equations of motion for the lifting

surface at flutter may be written as

where

_ 1 // hiLj dS
Aij b0_

S

(4)

(7)

1

Bi M i

(6a)



Mi : m(x,y)hi 2 as (6b)
0
S

In equation (4), Lj is a complex dimensionless expression for the

aerodynamic load distribution due to motion in the Jth natural mode and

is related to the pressure distribution mode as follows:

L

1

2

i

8

_pj(x,y) = 4_DV 2 _-3--Lj(x,y)
b02

(7)

The procedure used in evaluating Lj consists in representing the

aerodynamic surface loading by a series expression that automatically
satisfies the load conditions at the wing edges. (See ref. 4.) With

the load distribution represented in series form, downwash angles at a

number of control points on the surface are used as boundary conditions

to determine a like number of arbitrary coefficients in the series.

This procedure is discussed in references l, 2, and 3- In the present

investigation, nine control points were used. (See fig. 3.) For a

given Mach number, mass ratio, and planform, Lj is a function only of

reduced frequency kO. In the present investigation, values of kO at

flutter were taken from the flutter analysis reported in reference 1.

These values of kO were then substituted into the flutter determinant

of reference 1 and the determinant was solved to insure that these

reduced frequencies corresponded to flutter conditions (defined as

g = 0). These values of kO were then used to calculate Lj

(j = 1,2,5) at flutter.

Generalized Coordinates

Generalized coordinate ratios at flutter were determined from the

simultaneous equations (5). With the previously calculated values

of Lj, the generalized aerodynamic forces Aij were calculated as

described in reference ]. At each Mach number the previously mentioned

solution of the flutter determinant provided values of a_i/_ for a

mass ratio _ of 60. Substitution of these quantities into equa-

tions (3) yields a set of linear, homogeneous, algebraic equations

with the values of qi unknown; that is,
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Cllq I + Cl2q 2 + Cl3q 3 = 0

C21q I + C22q 2 + 023q 3 = 0

C31q I + C32q 2 + C33q 3 = 0 _#

(8)

where the values of Cij are complex constants. Since the coefficient

determinant of equations (8) is equal to zero, the equations cannot be

solved explicitly for ql, q2, and q3" The equations can, however,

be solved for the ratios _2/_ 1 and _3/_ 1.

Mode Shapes and Pressure-Coefficient

Distributions at Flutter

The flutter mode shape may be determined from equation (i) which
may be written, for three modes, as

h(x,y,t) = 1 + ----h2 + - h e i_t

ql ql
(9)

With ql chosen equal to unity as a convenient reference for the ampli-

tudes and phase angles of the displacements, there results

L

1

2

1

8

h(x,y,t)= lhl+ +  3h31ei( + )

= ho(x,y)ei(_) (lO)

where ho is the displacement amplitude at flutter and m = m(x,y) is

the phase angle between the flutter mode and its first natural-mode com-

ponent. The natural mode shapes h i (fig. 2) were taken from refer-

ence l, and the complex ratios _2/_ 1 and _3/_1 were obtained from

solutions of equations (8).

Distributions of the lifting-pressure coefficient at flutter were

obtained by employing equations (2) and (7) as



9

L

1

2

1

8

V2Z i _

_(x,y,t) = 4_ b--j_ql,,1 + q_2 + q3L3)

Therefore,

* t _p(x,y,t)

Cp (x,y,) : !pv 2
2

_
+ L2 + -- L _i eimt

b02_l qU ql

Again, choosing ql equal to unity yields

(li)

(12)

Cp -8_%IL 1 + q2L2 + {3L31ei(_b+e)
b02

= Cp,o(X,y)ei(aWe+e) (13)

where 8 = e(x,y) is the phase angle between the lifting pressure and

the first natural-mode component of the flutter motion, and Cp,0(x,y )

is the amplitude of the complex lifting-pressure coefficient at flutter.

In considering the distributions of llfting-pressure coefficient

at flutter, one must utilize the phase angle between the lifting pres-

sure and the flutter motion. This angle is given by

_ = e - c_

Hence, the lifting-pressure coefficient referenced to the flutter mode

may be written as

Cp = Cp,o(X,y)e i(°Jt+_) = Cp (x,y,t)e -i(_ (l_)

It should be noted that this expression for the liftlng-pressure

coefficient is a complex number with its real component in phase and

its imaginary component 90° out of phase with the displacement at the

flutter condition.
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Extraction of Energy From Airstream

It is well knownthat only the componentof the lifting pressure
that is in phase with the oscillatory velocity of the lifting surface
(i.e., out of phase with the displacement) can contribute to an energy
exchangebetween the surface and the airstream. Thus3 if energy is
extracted from the airstream, this pressure componentmust have the
samesense as the velocity; that is, the phase angle _ must be in the
range 0 < _ < 180°. Thus, energy is extracted from the airstreamwhen
the lifting pressure leads the displacement.

RESULTSANDDISCUSSION

The equations of motion (eqs. (8)) for an oscillating lifting sur-
face were solved for the generalized coordinate ratios of a horizontal
tall moving in its flutter modeat Machnumbersfrom 0.90 to 0.90 for a
mass ratio of 60. These generalized coordinate ratios were then used
to determine the modeshapes (see eq. (lO)) and the liftlng-pressure-
coefficient distributions (see eq. (14)) existing on the surface at
flutter. Those regions of the tall which extract energy from the air-
stream were identified.

L
1
2
1
8

Flutter-Mode Shapes

Figure 5 presents the maximum amplitude ho(x,y) of the flutter-

mode shapes as calculated from equation (lO). It should be noted that

in equation (lO), ho was referred to a unit displacement of the first

natural mode; that is, ql = 1.O. Since the calculated flutter mode

consists of a complex combination of the natural vibration modes, dif-

ferences in phase exist between various points on the surface. Contours

of the phase angle m = _(x,y) between the displacement at flutter and

its first natural-mode component are presented in figure 6. Reference 1

presents calculated and experimental flutter-frequency ratios which
decrease as Mach number increases from 0.50 to 0.90. It may be con-

cluded from this variation of flutter-frequency ratio that the contri-

butions to the flutter mode of the higher natural modes decrease with

increasing Mach number. Examination of the flutter-mode amplitudes

presented in figure 9 indicates that the contribution to the flutter
mode of the third natural mode decreases as Mach number increases.

Hence, the flutter modes of the present investigation confirm the con-

clusion drawn from the flutter-frequency ratios of reference 1. The

phase-angle contours of figure 6 show that, as Mach number increases,

the phase-angle distributions are roughly similar over the inboard two-

thirds of the surface, but decrease in magnitude over the outboard
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one-thlrd of the surface. These contours also show that the inboard
region of the tail leads the first modecomponent, that the 70-percent-
semispan region is nearly in phase with the first mode, and that the tip
region lags the first mode, each in varying degrees according to Mach
number.

L
I
2
i
8

Pressure Distribution at Flutter

Figure 7 presents distributions of the real and imaginary parts of

(_ ,0ei_ ] {_ ,0ei¢)the complex amplitudes R and I of the lifting-

pressure coefficient referred to the flutter displacement. (See

eq. (15).) Since the real part of the llfting-pressure coefficient is

in phase with the flutter displacement, it contributes an aerodynamic

stiffness force to the tail which may be positive or negative according

to its sign. The imaginary part of the lifting-pressure coefficient is

90 ° out of phase with the flutter displacement, and hence constitutes

an aerodynamic damping force.

From the real-component plots of figure 7, it is seen that the

chordwise distributions are similar to steady-state pressure-coefficlent

distributions. It is also seen that while the real-component distribu-

tions display the same trend throughout the Mach number range investi-

gated, the magnitudes of the real components decrease with increasing

Mach number, particularly near the leading edge. This decrease in the

magnitudes of the negative real components may be interpreted as a

decrease in the aerodynamic stiffness contribution, which, in turn,

would be expected to produce a reduction in flutter frequency with

increasing Mach number. The data of reference 1 confirm this expecta-

tion by showing a continual decrease in flutter frequency as Mach number

increases from 0._0 to 0.90.

From the imaginary-component plots of figure 7, it is seen that

while the magnitudes of the pressures decrease with increasing Mach num-

ber, the regions of positive and negative out-of-phase pressures retain

essentially their same size and location. Hence, in spite of the pre-

viously mentioned change in flutter mode with increasing Mach number,

the regions of the tail which experience negative aerodynamic damping

forces are virtually unchanged from values of M = 0._0 to M = 0.90.

Extraction of Energy FromAirstream

As indicated in the section "Analysis," those regions of the sur-

face which extract energy from the airstreammay be identified by the

phase angle _ between the lifting pressure and the flutter mode
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displacement. Specifically, values of _ in the range 0 < _ < 180°
indicate extraction of energy from the stream. Contour plots of
are presented in figure 8. It should be noted that figures 7 and 8 are
related, since regions of 0 < _ < 180° correspond to regions of posi-
tive imaginary componentsof the pressure. Examination of the phase-
angle plots of figure 8 shows, as does figure 7, that the boundaries of
the unstable regions of the tall are essentially unaffected by Machnum-
ber in the range 0._0 __M __0.90.

CONCLUSIONS

The modeshapes and pressure distributions at flutter for the
horizontal-tall model as reported in NASATN D-379 have been investi-
gated analytically by the kernel-functlon method. The flutter mode
shape was assumedto be a combination of the first three natural modes
of the model. The results of this analysis indicate:

1. The contribution to the flutter modeof the third natural mode
decreases as Machnumber increases from 0.90 to 0.90.

2. The pressure distributions indicate that the size and location
of the regions of the tail which contribute to the flutter instability
by absorbing energy from the alrstream are virtually unaffected by Mach
number M in the range 0.90 _ M _ 0.90.

3. The reduction in flutter frequency with increasing Machnumber
which had previously been observed in NASATN D-379 for this tall
results from a reduction in the aerodynamic stiffness forces.

L
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Langley Research Center,

National Aeronautics and Space Administration,

Langley Air Force Base, Va., January ll, 1962.
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TABLE I.- PROPERTIES OF MODEL

Thickness ratio ........................ 0.035

Leading-edge sweep angle, AZe , deg ........... 30

Streamwise airfoil section ................. Biconvex

Streamwise semichord at center line, bo, ft .......... 0.625

Semispan, Z, ft ...................... 1.220

Panel mass, lb-sec2/ft .................... 0.05579

Panel aspect ratio, Ap .................... 1.66

Taper ratio, h ...................... 0.176

Natural frequencies, cps:

First mode ......................... 40

Second mode ......................... 108

Third mode ......................... ll7
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Position of model

At rr_ximum amplitude
At rest !

i-J
ro

CO

Leodlng edge

/

Trailing edge

Root

(a) M = o.5o.

Figure 5.- Maximum amplitude ho(x,y) for flutter-mode shapes as defined

in equation (lO).



23

co

OJ

I

Position of model

At maximum amplitude
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/

edge

Root

(b) M = 0.75.

Figure _.- Continued.
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Position of model

At maximum amplitude

At rest F_
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co

/ Trailing edge

Leoding edge

/

Root

(c) M = o.80.

Figure :5.- Continued.
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At maximum amplitude

At rest
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Figure }.- Continued.
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Position of model

At maximum amplitude

At rest

Leading edge

/ Trailing edge

Root

(e) M = 0.90.

V
ro

Figure 5.- Concluded.
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l R{Cp,oe_4'} =-45.21

\
-- Negative

-- -- Positive
p-,
IX)

(Do

-I

R{Cppe i_}

.47r .5_r .67r
Chordwise positK)n,_,rodians

Real port

(a) M = 0..50; ko = 0.245.

Figure 7.- Complex amplitude Cp,O ei_ of the lifting-pressure coefficient

referred to the flutter displacement. (See eq. (14).)
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